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Mechanism-based, irreversible enzyme inactivation by "suicide" 
substrates2 has become an important tool for the study of enzy­
matic reaction mechanisms and a focal point for drug design. The 
seminal demonstration of this phenomenon was made3 by Bloch 
in studies on /3-hydroxydecanoylthioester dehydrase,4 an enzyme 
that catalyzes the reactions shown (R = acyl carrier protein, in 
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vivo). The dehydrase-catalyzed allylic rearrangement is a su-
prafacial process,5 apparently mediated by a single active site 
histidine residue.3b 

Inactivation of dehydrase by 3-decynoic acid iV-acetylcyste-
amine thio ester (3-decynoyl-NAC) is believed to occur by a 
mechanism analogous to that of the "normal" allylic rearrange­
ment. Thus, propargylic rearrangement of 3-decynoyl-NAC 
produces 2,3-decadienoyl NAC, a potent electrophile which al­
kylates the active site histidine.3b Nucleophilic attack on the allenic 
thio ester could in principle lead to one of two vinyl imidazole 
structures, 1 or 2. We wish to report that this process is ac-
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companied by protonation at carbon-2, giving the kinetically 
favored, nonconjugated vinyl imidazole 1. 

Acquisition of the 13C NMR spectrum of homogeneous de­
hydrase6 using WALTZ-16 proton decoupling8 (Figure lb) pro­
duced minimal sample warming and allowed rapid data collection.9 
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Figure 1. , 3C|'H| NMR spectra were obtained on a Varian XL-400 at 
100.6 MHz, using 3.0-mL samples in 10 mM KPO4, pH 7.0, in 10-mm 
tubes. Sample temperatures reached only 27 0C, obviating external 
cooling. Data points, 32 K, were collected over 200 ppm (acquistion time 
= 0.8 s, digital resolution = 1.22 Hz). Chemical shifts are referenced 
to internal acetone at 29.8 ppm. Short T1 values for the resonances of 
interest allowed the use of a 90° pulse (24 ^s), with no pulse delay. 
Except as noted, spectra were processed with 3.0-Hz line broadening 
(LB). (a) 3-[2-,3C]Decynoyl-NAC (0.34 mg, 1.26 /umol), 2500 scans, 
LB = 1.5 Hz; (b) dehydrase (51 mg, 1.42 jimol), 75 000 scans; (c) 
dehydrase (50 mg, 1.39 jjmol) plus 1.0 subunit equivalent of 3-[2-13C]-
decynoyl NAC, 75 000 scans; (d) as in (c), but with a total of 2.0 equiv 
of inactivator; (e) as in (c), but with a total of 3.0 equiv of inactivator. 
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To a 50-mg (1.39 ^mol) sample of dehydrase (determined gra-
vimetrically) was added 1.0 subunit equivalent of 3-[2-13C] de-
cynoyl-NAC.10 (Dehydrase is a dimer, MW = 36000.) Following 
virtually instantaneous" enzyme inactivation, a 13Cj1Hj NMR 
spectrum of the mixture (Figure Ic) showed the absence of free 
inhibitor. Instead, two new signals were evident, at 45.0 (LW 
= 36 Hz)9 and 110.2 ppm (LW = 28 Hz),9 in a ratio of ca. 2:1. 
Further insight came from a preliminary experiment in which 
aging of inactivated enzyme (2 weeks at 4 0C) caused the ratio 
of integrated areas of the peaks at 45 and 110 ppm to become 
reversed. This suggests that the 45 ppm signal is due to the initially 
formed adduct, which undergoes slow conversion to the species 
exhibiting the 110 ppm resonance. 

Clearly, only C-2 of structure 1 (and not structure 2) could 
produce the 45 ppm resonance. In fact, C-2 of the adduct formed 
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between TV-acetylhistidine methyl ester and 2,3-decadienoic acid 
n-propyl thio ester (3,12 C = C configuration unknown) resonates 
at 44.8 ppm (CDCl3).13'14 

Application of 13C NMR spectroscopy15 has also led to reso­
lution of the question of whether one or two inactivator molecules 
are bound per dehydrase dimer.16 Thus, to the sample giving 
the spectrum shown in Figure Ic was added a second equivalent 
of inactivator. While the proportions of the 45 and 110 ppm 
signals were changed (vide supra, Figure Id), importantly, no free 
inhibitor was detected. Additionally, the total integrated area 
of the bound species was twice what had been observed in Figure 
Ic. With the addition of a third equivalent (Figure Ie), a sharp 
new resonance at 27.5 ppm (LW = 3 Hz, LB = 0)9 appeared 
rapidly (f^2 = 10-15 min) at the expense of free thio ester (33.6 
ppm). Control experiments showed that 3-[2-13C]decynoyl-NAC 
is stable in buffer and that this 27.5 ppm resonance owes to the 
corresponding free acid, presumably formed by nonspecific, 
protein-catalyzed hydrolysis of the thio ester.17 In addition, the 
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small new signal at 45.4 ppm (LW = 13 Hz)9 suggests that a small 
portion of the inactivator has become bound (as 1) to a histidine 
on the periphery of the enzyme.18 

In conclusion, inhibition of dehydrase by 3-decynoyl-NAC 
involves isomerization to 2,3-decadienoyl-NAC, followed rapidly 
by reaction of the latter with an active site histidine, forming 
species 1. The stoichiometry of inactivation is clearly one molecule 
of inactivator for each dehydrase subunit, providing additional 
evidence that the subunits are identical and refuting the proposed 
"half-of-the-sites" reactivity.163'0'19 
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We describe herein the direct observation of the triplet state 
of 1,3-dimethyl-1,3-cyclobutadiyl (1) by ESR spectroscopy and 
a study of its thermal behavior. Buchwalter and Closs' landmark 
observation of triplet 1,3-cyclopentadiyl (2)2 nearly 10 years ago 
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appeared to open the way for the direct spectroscopic study of 
localized biradicals, an important class of reactive intermediates.3 
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